Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2868, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570478

RESUMO

Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.


Assuntos
Interneurônios , Neurônios , Humanos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Neurônios Aferentes , Sinapses/fisiologia , Neurotransmissores
2.
Nat Mater ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409601

RESUMO

Understanding the structural and dynamic properties of disordered systems at the mesoscale is crucial. This is particularly important in organic mixed ionic-electronic conductors (OMIECs), which undergo significant and complex structural changes when operated in an electrolyte. In this study, we investigate the mesoscale strain, reversibility and dynamics of a model OMIEC material under external electrochemical potential using operando X-ray photon correlation spectroscopy. Our results reveal that strain and structural hysteresis depend on the sample's cycling history, establishing a comprehensive kinetic sequence bridging the macroscopic and microscopic behaviours of OMIECs. Furthermore, we uncover the equilibrium and non-equilibrium dynamics of charge carriers and material-doping states, highlighting the unexpected coupling between charge carrier dynamics and mesoscale order. These findings advance our understanding of the structure-dynamics-function relationships in OMIECs, opening pathways for designing and engineering materials with improved performance and functionality in non-equilibrium states during device operation.

3.
Nat Commun ; 15(1): 1598, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383505

RESUMO

Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium Shewanella oneidensis that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from S. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.


Assuntos
Respiração Celular , Eletricidade , Transporte de Elétrons
4.
Adv Sci (Weinh) ; : e2305562, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350724

RESUMO

Conductive polymers (CPs) are widely studied for their ability to influence a myriad of tissue systems. While their mixed ionic/electronic conductivity is commonly considered the primary driver of these benefits, the mechanisms by which CPs influence cell fate remain unclear. In this study, CP-biomaterial interactions are investigated using collagen, due to its widespread prevalence throughout the body and in tissue engineering constructs. Collagen is functionalized with both electrostatically and covalently bound derivatives of the CP poly(3,4-ethylenedioxythiophene) (PEDOT) doped via backbone-tethered sulfonate groups, which enable high solubility and loading to the collagen biomatrix. Intrinsically doped scaffolds are compared to those incorporated with a commercially available PEDOT formulation, which is complexed with polyanionic polystyrene sulfonate (PSS). Low loadings of intrinsically doped PEDOT do not increase substrate conductivity compared to collagen alone, enabling separate investigation into CP loading and conductivity. Interestingly, higher PEDOT loading bolsters human mesenchymal stromal (hMSC) cell gene expression of Oct-4 and NANOG, which are key transcription factors regulating cell stemness. Conductive collagen composites with commercial PEDOT:PSS do not significantly affect the expression of these transcription factors in hMSCs. Furthermore, it is demonstrated that PEDOT regulates cellular fate independently from physical changes to the material but directly to the loading of the polymer.

5.
Res Sq ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38352487

RESUMO

Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding. Herein, we describe synthesis, characterization, and implementation of an electroactive biodegradable elastomer for urinary bladder tissue engineering. To create an electrically conductive and mechanically robust scaffold to support bladder tissue regeneration, we developed a phase-compatible functionalization method wherein the hydrophobic conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was polymerized in situ within a similarly hydrophobic citrate-based elastomer poly(octamethylene-citrate-co-octanol) (POCO) film. We demonstrate the efficacy of this film as a scaffold for bladder augmentation in athymic rats, comparing PEDOT-POCO scaffolds to mesenchymal stromal cell-seeded POCO scaffolds. PEDOT-POCO recovered bladder function and anatomical structure comparably to the cell-seeded POCO scaffolds and significantly better than non-cell seeded POCO scaffolds. This manuscript reports: (1) a new phase-compatible functionalization method that confers electroactivity to a biodegradable elastic scaffold, and (2) the successful restoration of the anatomy and function of an organ using a cell-free electroactive scaffold.

6.
Adv Mater ; 36(1): e2306691, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37680065

RESUMO

Conductive hydrogels are promising materials with mixed ionic-electronic conduction to interface living tissue (ionic signal transmission) with medical devices (electronic signal transmission). The hydrogel form factor also uniquely bridges the wet/soft biological environment with the dry/hard environment of electronics. The synthesis of hydrogels for bioelectronics requires scalable, biocompatible fillers with high electronic conductivity and compatibility with common aqueous hydrogel formulations/resins. Despite significant advances in the processing of carbon nanomaterials, fillers that satisfy all these requirements are lacking. Herein, intrinsically dispersible acid-crystalized PEDOT:PSS nanoparticles (ncrys-PEDOTX ) are reported which are processed through a facile and scalable nonsolvent induced phase separation method from commercial PEDOT:PSS without complex instrumentation. The particles feature conductivities of up to 410 S cm-1 , and when compared to other common conductive fillers, display remarkable dispersibility, enabling homogeneous incorporation at relatively high loadings within diverse aqueous biomaterial solutions without additives or surfactants. The aqueous dispersibility of the ncrys-PEDOTX particles also allows simple incorporation into resins designed for microstereolithography without sonication or surfactant optimization; complex biomedical structures with fine features (< 150 µm) are printed with up to 10% particle loading . The ncrys-PEDOTX particles overcome the challenges of traditional conductive fillers, providing a scalable, biocompatible, plug-and-play platform for soft organic bioelectronic materials.

7.
Nat Commun ; 14(1): 7019, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945597

RESUMO

Implantable cell therapies and tissue transplants require sufficient oxygen supply to function and are limited by a delay or lack of vascularization from the transplant host. Previous exogenous oxygenation strategies have been bulky and had limited oxygen production or regulation. Here, we show an electrocatalytic approach that enables bioelectronic control of oxygen generation in complex cellular environments to sustain engineered cell viability and therapy under hypoxic stress and at high cell densities. We find that nanostructured sputtered iridium oxide serves as an ideal catalyst for oxygen evolution reaction at neutral pH. We demonstrate that this approach exhibits a lower oxygenation onset and selective oxygen production without evolution of toxic byproducts. We show that this electrocatalytic on site oxygenator can sustain high cell loadings (>60k cells/mm3) in hypoxic conditions in vitro and in vivo. Our results showcase that exogenous oxygen production devices can be readily integrated into bioelectronic platforms, enabling high cell loadings in smaller devices with broad applicability.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia Celular , Fenômenos Fisiológicos Respiratórios
8.
Adv Mater ; : e2305371, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824715

RESUMO

The latest developments in fiber design and materials science are paving the way for fibers to evolve from parts in passive components to functional parts in active fabrics. Designing conformable, organic electrochemical transistor (OECT) structures using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) fibers has excellent potential for low-cost wearable bioelectronics, bio-hybrid devices, and adaptive neuromorphic technologies. However, to achieve high-performance, stable devices from PEDOT:PSS fibers, approaches are required to form electrodes on fibers with small diameters and poor wettability, that leads to irregular coatings. Additionally, PEDOT:PSS-fiber fabrication needs to move away from small batch processing to roll-to-roll or continuous processing. Here, it is shown that synergistic effects from a superior electrode/organic interface, and exceptional fiber alignment from continuous processing, enable PEDOT:PSS fiber-OECTs with stable contacts, high µC* product (1570.5 F cm-1 V-1 s-1 ), and high hole mobility over 45 cm2 V-1 s-1 . Fiber-electrochemical neuromorphic organic devices (fiber-ENODes) are developed to demonstrate that the high mobility fibers are promising building blocks for future bio-hybrid technologies. The fiber-ENODes demonstrate synaptic weight update in response to dopamine, as well as a form factor closely matching the neuronal axon terminal.

9.
Nat Mater ; 22(9): 1055-1056, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644224
10.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645977

RESUMO

Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacterium Shewanella oneidensis that enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) from S. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.

11.
ACS Appl Mater Interfaces ; 15(25): 30553-30566, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37326843

RESUMO

Understanding the ionic composition and distribution in organic mixed ionic-electronic conductors (OMIECs) is crucial for understanding their structure-property relationships. Despite this, direct measurements of OMIEC ionic composition and distribution are not common. In this work, we investigated the ionic composition and mesoscopic structure of three typical p-type OMIEC materials: an ethylene glycol-treated crosslinked OMIEC with a large excess fixed anionic charge (EG/GOPS-PEDOT:PSS), an acid-treated OMIEC with a tunable fixed anionic charge (crys-PEDOT:PSS), and a single-component OMIEC without any fixed anionic charge (pg2T-TT). A combination of X-ray fluorescence (XRF) and X-ray photoelectron spectroscopies, gravimetry, coulometry, and grazing incidence small-angle X-ray scattering (GISAXS) techniques was employed to characterize these OMIECs following electrolyte exposure and electrochemical cycling. In particular, XRF provided quantitative ion-to-monomer compositions for these OMIECs from passive ion uptake following aqueous electrolyte exposure and potential-driven ion uptake/expulsion following electrochemical doping and dedoping. Single-ion (cation) transport in EG/GOPS-PEDOT:PSS due to Donnan exclusion was directly confirmed, while significant fixed anion concentrations in crys-PEDOT:PSS doping and dedoping were shown to occur through mixed anion and cation transport. Controlling the fixed anionic (PSS-) charge density in crys-PEDOT:PSS mapped the strength of Donnan exclusion in OMIEC systems following a Donnan-Gibbs model. Anion transport dominated pg2T-TT doping and dedoping, but a surprising degree of anionic charge trapping (∼1020 cm-3) was observed. GISAXS revealed minimal ion segregation both between PEDOT- and PSS-rich domains in EG/GOPS-PEDOT:PSS and between amorphous and semicrystalline domains in pg2T-TT but showed significant ion segregation in crys-PEDOT:PSS at length scales of tens of nm, ascribed to inter-nanofibril void space. These results bring new clarity to the ionic composition and distribution of OMIECs which are crucial for accurately connecting the structure and properties of these materials.

12.
ACS Appl Mater Interfaces ; 15(20): 24638-24647, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37158805

RESUMO

A promising new class of biosensors leverages the sensing mechanisms of living cells by incorporating native transmembrane proteins into biomimetic membranes. Conducting polymers (CPs) can further improve the detection of electrochemical signals from these biological recognition elements through their low electrical impedance. Supported lipid bilayers (SLBs) on CPs mimic the structure and biology of the cell membrane to enable such sensing, but their extrapolation to new target analytes and healthcare applications has been difficult due to their poor stability and limited membrane properties. Blending native phospholipids with synthetic block copolymers to create a hybrid SLB (HSLB) may address these challenges by allowing for the tuning of chemical and physical properties during membrane design. We establish the first example of HSLBs on a CP device and show that polymer incorporation enhances bilayer resilience and thus offers important benefits toward bio-hybrid bioelectronics for sensing applications. Importantly, HSLBs outperform traditional phospholipid bilayers in stability by exhibiting strong electrical sealing after exposure to physiologically relevant enzymes that cause phospholipid hydrolysis and membrane degradation. We investigate the impact of HSLB composition on membranes and device performance and demonstrate the ability to finely adjust the lateral diffusivity of HSLBs with modest changes in block copolymer content through a large compositional range. The inclusion of the block copolymer into the bilayer does not disrupt electrical sealing on CP electrodes, an essential metric for electrochemical sensors, or the insertion of a representative transmembrane protein. This work interfacing tunable and stable HSLBs with CPs paves the way for future bioinspired sensors that combine the exciting developments from both bioelectronics and synthetic biology.


Assuntos
Técnicas Biossensoriais , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Membrana Celular/química , Polímeros/química , Proteínas de Membrana/análise , Fosfolipídeos
13.
Nanoscale ; 15(14): 6793-6801, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946985

RESUMO

The introduction of oligoether side chains onto a polymer backbone can help to stabilise polymeric dispersions in water without the necessity of surfactants or additives when conjugated polymer nanoparticles are prepared. A series of poly(3-hexylthiophene) (P3HT) derivatives with different content of a polar thiophene derivative 3-((2-methoxyethoxy)methyl)thiophene was interrogated to find the effect of the polar chains on the stability of the formed nanoparticles, as well as their structural, optical, electrochemical, and electrical properties. Findings indicated that incorporation of 10-20 percent of the polar side chain led to particles that are stable over a period of 42 days, with constant particle size and polydispersity, however the particles from the polymer with 30 percent polar side chain showed aggregation effects. The polymer dispersions showed a stronger solid-like behaviour in water with decreasing polar side chain content, while thin film deposition from water was found to afford globular morphologies and crystallites with more isotropic orientation compared to conventional solution-processed films. As a proof-of-principle, field-effect transistors were fabricated directly from the aqueous dispersions demonstrating that polymers with hydrophilic moieties can be processed in water without the requirement of surfactants.

14.
Nat Commun ; 14(1): 1665, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966131

RESUMO

Electrochemical aptamer-based sensors are typically deployed as individual, passive, surface-functionalized electrodes, but they exhibit limited sensitivity especially when the area of the electrode is reduced for miniaturization purposes. We demonstrate that organic electrochemical transistors (electrolyte gated transistors with volumetric gating) can serve as on-site amplifiers to improve the sensitivity of electrochemical aptamer-based sensors. By monolithically integrating an Au working/sensing electrode, on-chip Ag/AgCl reference electrode, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) counter electrode - also serving as the channel of an organic electrochemical transistor- we can simultaneously perform testing of organic electrochemical transistors and traditional electroanalytical measurement on electrochemical aptamer-based sensors including cyclic voltammetry and square-wave voltammetry. This device can directly amplify the current from the electrochemical aptamer-based sensor via the in-plane current modulation in the counter electrode/transistor channel. The integrated sensor can sense transforming growth factor beta 1 with 3 to 4 orders of magnitude enhancement in sensitivity compared to that in an electrochemical aptamer-based sensor (292 µA/dec vs. 85 nA/dec). This approach is believed to be universal, and can be applied to a wide range of tethered electrochemical reporter-based sensors to enhance sensitivity, aiding in sensor miniaturization and easing the burden on backend signal processing.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos
15.
Nature ; 613(7944): 496-502, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653571

RESUMO

Organic electrochemical transistors (OECTs) and OECT-based circuitry offer great potential in bioelectronics, wearable electronics and artificial neuromorphic electronics because of their exceptionally low driving voltages (<1 V), low power consumption (<1 µW), high transconductances (>10 mS) and biocompatibility1-5. However, the successful realization of critical complementary logic OECTs is currently limited by temporal and/or operational instability, slow redox processes and/or switching, incompatibility with high-density monolithic integration and inferior n-type OECT performance6-8. Here we demonstrate p- and n-type vertical OECTs with balanced and ultra-high performance by blending redox-active semiconducting polymers with a redox-inactive photocurable and/or photopatternable polymer to form an ion-permeable semiconducting channel, implemented in a simple, scalable vertical architecture that has a dense, impermeable top contact. Footprint current densities exceeding 1 kA cm-2 at less than ±0.7 V, transconductances of 0.2-0.4 S, short transient times of less than 1 ms and ultra-stable switching (>50,000 cycles) are achieved in, to our knowledge, the first vertically stacked complementary vertical OECT logic circuits. This architecture opens many possibilities for fundamental studies of organic semiconductor redox chemistry and physics in nanoscopically confined spaces, without macroscopic electrolyte contact, as well as wearable and implantable device applications.

16.
Nat Commun ; 13(1): 7964, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575179

RESUMO

Organic electrochemical transistors are a promising technology for bioelectronic devices, with applications in neuromorphic computing and healthcare. The active component enabling an organic electrochemical transistor is the organic mixed ionic-electronic conductor whose optimization is critical for realizing high-performing devices. In this study, the influence of purity and molecular weight is examined for a p-type polythiophene and an n-type naphthalene diimide-based polymer in improving the performance and safety of organic electrochemical transistors. Our preparative GPC purification reduced the Pd content in the polymers and improved their organic electrochemical transistor mobility by ~60% and 80% for the p- and n-type materials, respectively. These findings demonstrate the paramount importance of removing residual Pd, which was concluded to be more critical than optimization of a polymer's molecular weight, to improve organic electrochemical transistor performance and that there is readily available improvement in performance and stability of many of the reported organic mixed ionic-electronic conductors.

17.
Polym Chem ; 13(19): 2764-2775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189107

RESUMO

The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition-fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow (D = 1.1) and broad (D = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS (M n = 145 kg mol-1) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [µC * ] values (~140 F·cm-1V-1s-1) in PEDOT:PSS, despite having a lower volumetric capacitance (C * = 35 ± 4 F cm-3). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility (µ OECT ~ 4 cm2V-1s-1) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces.

18.
Chem Mater ; 34(19): 8593-8602, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36248228

RESUMO

Electron-transporting (n-type) conjugated polymers have recently been applied in numerous electrochemical applications, where both ion and electron transport are required. Despite continuous efforts to improve their performance and stability, n-type conjugated polymers with mixed conduction still lag behind their hole-transporting (p-type) counterparts, limiting the functions of electrochemical devices. In this work, we investigate the effect of enhanced backbone coplanarity on the electrochemical activity and mixed ionic-electronic conduction properties of n-type polymers during operation in aqueous media. Through substitution of the widely employed electron-deficient naphthalene diimide (NDI) unit for the core-extended naphthodithiophene diimide (NDTI) units, the resulting polymer shows a more planar backbone with closer packing, leading to an increase in the electron mobility in organic electrochemical transistors (OECTs) by more than two orders of magnitude. The NDTI-based polymer shows a deep-lying lowest unoccupied molecular orbital level, enabling operation of the OECT closer to 0 V vs Ag/AgCl, where fewer parasitic reactions with molecular oxygen occur. Enhancing the backbone coplanarity also leads to a lower affinity toward water uptake during cycling, resulting in improved stability during continuous electrochemical charging and ON-OFF switching relative to the NDI derivative. Furthermore, the NDTI-based polymer also demonstrates near-perfect shelf-life stability over a month-long test, exhibiting a negligible decrease in both the maximum on-current and transconductance. Our results highlight the importance of polymer backbone design for developing stable, high-performing n-type materials with mixed ionic-electronic conduction in aqueous media.

19.
Macromol Biosci ; 22(8): e2200103, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35596668

RESUMO

3D-printed hydrogel scaffolds functionalized with conductive polymers have demonstrated significant potential in regenerative applications for their structural tunability, physiochemical compatibility, and electroactivity. Controllably generating conductive hydrogels with fine features, however, has proven challenging. Here, micro-continuous liquid interface production (µCLIP) method is utilized to 3D print poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. With a unique in-situ polymerization approach, a sulfonated monomer is first incorporated into the hydrogel matrix and subsequently polymerized into a conjugated polyelectrolyte, poly(4-(2,3-dihydro-thieno[3,4-b][1,4]dioxin-2-ylmethoxy)-butane-1 sulfonic acid sodium salt (PEDOT-S). Rod structures are fabricated at different crosslinking levels to investigate PEDOT-S incorporation and its effect on bulk hydrogel electronic and mechanical properties. After demonstrating that PEDOT-S does not significantly compromise the structures of the bulk material, pHEMA scaffolds are fabricated via µCLIP with features smaller than 100 µm. Scaffold characterization confirms PEDOT-S incorporation bolstered conductivity while lowering overall modulus. Finally, C2C12 myoblasts are seeded on PEDOT-pHEMA structures to verify cytocompatibility and the potential of this material in future regenerative applications. PEDOT-pHEMA scaffolds promote increased cell viability relative to their non-conductive counterparts and differentially influence cell organization. Taken together, this study presents a promising new approach for fabricating complex conductive hydrogel structures for regenerative applications.


Assuntos
Hidrogéis , Poli-Hidroxietil Metacrilato , Condutividade Elétrica , Hidrogéis/química , Hidrogéis/farmacologia , Mioblastos , Impressão Tridimensional
20.
Adv Mater ; 34(21): e2110703, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35355340

RESUMO

Organic electrochemical transistors (OECTs) are devices with broad potential in bioelectronic sensing, circuits, and neuromorphic hardware. Their unique properties arise from the use of organic mixed ionic/electronic conductors (OMIECs) as the active channel. Typical OMIECs are linear polymers, where defined and controlled microstructure/morphology, and reliable characterization of transport and charging can be elusive. Semiconducting two-dimensional polymers (2DPs) present a new avenue in OMIEC materials development, enabling electronic transport along with precise control of well-defined channels ideal for ion transport/intercalation. To this end, a recently reported 2DP, TIIP, is synthesized and patterned at 10 µm resolution as the channel of a transistor. The TIIP films demonstrate textured microstructure and show semiconducting properties with accessible oxidation states. Operating in an aqueous electrolyte, the 2DP-OECT exhibits a device-scale hole mobility of 0.05 cm2 V-1 s-1 and a µC* figure of merit of 1.75 F cm-1 V-1 s-1 . 2DP OMIECs thus offer new synthetic degrees of freedom to control OECT performance and may enable additional opportunities such as ion selectivity or improved stability through reduced morphological modulation during device operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...